
Regulatory networks determine how cells adapt to the 
extra- or intracellular environment. In a typical network, 
a sensor detects a physical or chemical stimulus and trans-
mits that information into the network as a biochemical 
signal. Networks are composed of a series of intercon-
nected nodes, or signal-processing molecules (FIG. 1a). 
Each node receives an input signal from an upstream 
node and sends an output signal to a downstream node 
in response.

Signals often flow through hierarchically structured 
transcriptional networks, in which each node is a tran-
scription factor1,2. The final output of the network is a 
set of induced or repressed genes that determines the 
phenotype of the cell in response to information flowing 
through the network. Within these networks are many 
smaller modules with certain over-represented structural 
features, such as feedback or feedforward loops, that may 
carry specific physiological functions3,4. Despite thor-
ough studies on the properties of these transcriptional 
regulatory motifs5–8, connectivity maps of transcrip-
tional networks alone are often insufficient to explain 
the dynamic response of a cell to a given stimulus. A 
wide range of non-transcriptional interactions — post-
transcriptional, post-translational and pleiotropic pro-
cesses — can affect the functionality of transcriptional 
networks. Indeed, non-transcriptional signal processing 
can result in a complex network diagram even when only 
one or a handful of genes are involved. Only by view-
ing transcriptional networks along with the mechanistic 

details of their associated non-transcriptional processes 
can we arrive at a complete understanding of cellular 
regulation.

Non-transcriptional processes such as phosphoryla-
tion, methylation, regulated degradation of proteins and 
mRNA, and sequestration can have unexpected conse-
quences in regulatory networks. Consider a bacterial 
two-component system (FIG. 1b). A bifunctional sensor 
with both kinase and phosphatase activity senses an 
environmental stimulus and modulates the fraction of 
activated response regulator, which in turn modulates 
transcription of a downstream regulon9. The transcrip-
tional network diagram of a typical two-component 
system is simple (FIG. 1b, lower panel): the sensor and 
response regulator genes are expressed from a positively 
autoregulated operon10. However, an apparently minor 
non-transcriptional detail — whether the response 
regulator undergoes a low level of non-cognate sensor 
kinase-mediated phosphorylation — can drastically alter 
the effect of the feedback on the dynamic response11 
(FIG. 1c). Such non-cognate phosphorylation can come 
either from crosstalk with other sensor kinases or from 
phosphotransfer from small molecules. This effect con-
stitutes a small fraction of the total phosphorylation 
flux when the system is activated, and it is buffered by 
sensor phosphatase activity to prevent activation of the 
system in the absence of signal input11. Nonetheless, 
this slight difference in phosphorylation changes the 
dynamic behaviour of the system in an important way. 
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Networks
Sets of biochemical reactions 
or interactions that are 
employed for information 
processing in the cell. The term 
network can refer to either 
interactions on the whole-cell 
level or smaller circuits 
(subsystems) within the larger 
network.

Signal
In the context of this Review, 
the information that flows 
through a biological network. 
In a wider context, biological 
signals can take a variety of 
forms.

Non-transcriptional regulatory 
processes shape transcriptional 
network dynamics
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Abstract | Information about the extra- or intracellular environment is often captured as 
biochemical signals that propagate through regulatory networks. These signals eventually 
drive phenotypic changes, typically by altering gene expression programmes in the cell. 
Reconstruction of transcriptional regulatory networks has given a compelling picture of 
bacterial physiology, but transcriptional network maps alone often fail to describe 
phenotypes. Cellular response dynamics are ultimately determined by interactions between 
transcriptional and non-transcriptional networks, with dramatic implications for physiology 
and evolution. Here, we provide an overview of non-transcriptional interactions that can 
affect the performance of natural and synthetic bacterial regulatory networks.
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Nodes
Molecular entities, such as 
transcription factors or 
allosterically regulated 
enzymes, that take in a signal 
and then output a signal in 
response. When a node is 
described as upstream or 
downstream, this refers to its 
order in the information flow.

Pleiotropic
Of an interaction: in which  
one component or effect 
simultaneously affects many 
targets. In this Review, we refer 
to effects originating from 
coupling with global 
physiological processes in the 
cell.

Ultrasensitivity 
A type of signal–response 
curve characterized by a high 
slope in the responsive range.

Michaelis–Menten kinetics
A model of enzyme kinetics 
that is often used to 
mathematically represent 
first-order saturation 
processes, in which the flux (V) 
is determined by the equation:
 [x]

Km + [x]V = Vmax

(in which [x] is the 
concentration of substrate or 
regulator x, Vmax is the 
maximum flux rate and Km is 
the Michaelis–Menten 
constant).

Hill kinetics
A generalization of Michaelis–
Menten kinetics that allows a 
mathematical representation 
of higher-order, or cooperative, 
processes in which the flux 

[x]
Km + [x]

V = Vmax n n

n

has nth-order effective 
cooperativity ([x] is the 
concentration of substrate or 
regulator x, Vmax is the 
maximum flux rate, Km is the 
Michaelis–Menten constant 
and n is the Hill coefficient).

Effective cooperativity
A measure of sensitivity: how 
much one molecular species 
affects the production of 
another. 

When exogenous activation of the response regulator 
occurs alongside signal onset, the level of phosphoryl-
ated response regulator overshoots and then settles to 
a steady state, unlike the monotonic response expected 
in the absence of exogenous activation11 (FIG. 1c, left 
panel). This dynamic is computationally predicted to 
arise from a negative feedback loop that emerges in the 
system11 (see Supplementary information S1 (box)). 

Such overshoot kinetics can speed up the induction 
time of downstream genes (FIG. 1c, right panel) and has 
profound physiological consequences. In the PhoPQ 
signalling system of Salmonella enterica subsp. enterica 
serovar Typhimurium, overshoot is necessary for viru-
lence12. Wild-type bacteria are virulent and kill mice 
within 10 days. However, removing the overshoot with 
a feedback-disabling modification to the promoter 
decreases virulence such that S. Typhimurium-injected 
mice survive indefinitely12.

Deducing the relationships between a physiologi-
cal function, the dynamic response and the underlying 
molecular mechanisms is crucial if we are to extrapolate 
from the current handful of laboratory model systems 
to new, medically important or unculturable bacterial 
species. Characterization of metabolic, gene-regulatory 
and protein–protein interaction networks has broad-
ened our understanding of their underlying structures4. 
Nevertheless, a true understanding of the regulatory 
properties of networks requires that we discover the 
relationships between mechanistic details and dynam-
ics. These relationships, known as evolutionary design 
principles4,13, are formulated by conducting detailed 
measurements of dynamics, constructing synthetic gene 
networks and using mathematical models. Defining the 
principles that underlie biological regulation will not 
only facilitate our interpretation of natural networks but 
also improve our ability to engineer microorganisms 
to have robust synthetic behaviours with widespread 
medical and industrial importance. In this Review, we 
describe the effects of non-transcriptional regulatory 
processes such as ultrasensitivity, implicit and interact-
ing feedback loops, and spatiotemporal localization of 
molecules on transcriptional networks, using examples 
from both natural and engineered bacterial systems.

The ultrasensitive genetic switch
The ability of a biochemical network to respond to an 
input signal can be characterized by its signal–response 
curve, or transfer function (BOX 1). For transcriptional 
networks, such curves show how the expression of 
downstream genes changes as a function of transcrip-
tion factor concentration or the reception of activation 
signals. For transcription factors acting as monomers, 
the expected dependence resembles Michaelis–Menten 
kinetics: linear at low signal concentrations and saturated 
at high signal concentrations14. Multimeric transcrip-
tion factors with cooperativity can produce sigmoidal 
response curves that are typically captured with Hill kinetics, 
but the effective cooperativity (that is, the Hill coefficient) 
is restricted to a low integer number15, reflecting the 
number of subunits present in a complex16. By contast, 
post-translational signal–response curves are capable of 
attaining much higher effective cooperativities.

Signal–response systems with high effective coopera-
tivities are usually referred to as ultrasensitive17. They are 
characterized by a sharp transition threshold between 
the off and on states (BOX 1). The system output will be 
relatively insensitive to changes in signal either below 
or above the threshold, remaining unambiguously off 
or on. Subthreshold signals are absorbed similarly to 

Figure 1 | Information flow in signalling networks  
can strongly depend on non-transcriptional details, 
with important physiological consequences. 
a | Components in a transcriptional network. Input signals 
transfer information via nodes to create a physiological 
output. The lower schematic is a transcriptional network 
diagram corresponding to the detailed network in the 
upper panel. b | A typical gene circuit for a two-component 
system is positively autoregulated by phosphorylated 
response regulator (RR). The lower schematic is a simplified 
transcriptional network diagram corresponding to the 
detailed network in the upper panel. c | The system can 
exhibit feedback-induced overshoot (surge) kinetics  
if there is a small amount of regulator phosphorylation 
from an exogenous source in addition to sensor-mediated 
phosphorylation. In the absence of exogenous 
phosphorylation, induction is monotonic. Overshoot of 
regulator phosphorylation speeds the induction of 
downstream genes (as indicated in the normalized output 
graph on the right). SHK, sensor histidine kinase.
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a small amount of water in a sponge, whereas above-
threshold signals are akin to a large quantity of water 
saturating the sponge and spilling out. Ultrasensitivity 
to signals in the intermediate range can regulate costly 
processes that require a decisive response, or programme 
cells to ignore small or transient signals when the activa-
tion of output genes is not advantageous.

Several different molecular mechanisms related to 
saturation can allow biochemical ultrasensitivity. In 
the classical covalent-modification mechanism, a pro-
tein can be activated and deactivated (for example, by 
phosphorylation and dephosphorylation) by two com-
peting enzymes near saturation17. Ultrasensitivity in 
covalent-modification systems is important in develop-
ment, especially in eukaryotes, for creating irreversible 
lineage commitment18–20. Ultrasensitivity also plays a 
part in bacterial systems — for example, in the chemo-
tactic response of Escherichia coli21 or in the regulation 
of metabolic enzyme activity22. Regulated degradation23 
and stoichiometric sequestration24 (also referred to as 
molecular titration; discussed below) can also give rise 
to ultrasensitivity in bacteria.

Ultrasensitivity from stoichiometric sequestration. 
Ultrasensitivity can arise from stoichiometric seques-
tration, in which a protein is kept inactive via strong 
binding to a specific antagonist24. In bacterial transcrip-
tional regulation, alternative RNA polymerase (RNAP) 
σ-factors are often sequestered by anti-σ factors. When 
the alternative σ-factor is not sequestered, it stimu-
lates RNAP binding to condition-specific promoters. 
However, if concentrations of σ-factors and anti-σ factors 

are independently regulated, the transcriptional response 
will be ultrasensitive to the ratio of their concentration.

For example, the global stress response regulator 
RNAP factor σE in Mycobacterium tuberculosis exhibits 
ultrasensitivity owing to sequestration by the anti-σ fac-
tor RseA25. The fraction of active (free) σE changes with 
the level of total σE in an ultrasensitive manner (FIG. 2a). 
When the concentration of RseA exceeds that of σE, 
most σE will be bound by the anti-σ factor and there will 
be little free σE. When the concentration of σE reaches 
that of RseA, most σE is still sequestered. However, when 
σE abundance surpasses that of RseA, the concentra-
tion of free σ-factor sharply increases (FIG. 2a, lower 
panel).  When this alternative σ-factor is abundant, it 
effectively binds the RNAP core, causing a global shift in 
gene expression. As a result of the ultrasensitive switch, 
the anti-σ factor RseA buffers the effects of σE-mediated 
changes until a critical stress threshold is reached. A 
directly analogous situation arises when a constitutively 
transcribed small RNA (sRNA) (FIG. 2b) binds a target 
mRNA, preventing translation of the target until the 
sRNA is saturated, thus determining a precise thresh-
old for protein production26,27. In both examples, the 
ultrasensitivity crucially depends on the strength of  
the sequestration interaction: with increased binding 
affinity (a decrease in the dissociation constant), we 
expect an increase in the effective cooperativity (curves 
in FIG. 2a,b).

Ultrasensitivity coupled to positive feedback. Positive 
autoregulation can further increase effective coopera-
tivity28. The combination of ultrasensitivity and positive 

Box 1 | Quantification of signal responses 

Signal–response systems are quantified 
with the mathematical approach of 
sensitivity analysis. The sensitivity is 
typically quantified as the derivative, or 
slope, of the signal–response curve on a 
log–log scale (see the figure, parts a  
(signal–response curves) and b,c (on a  
log–log scale, with slopes indicated)). With 
nth order Hill kinetics, the sensitivity is 
approximately equal to the Hill coefficient, 
n, at low signal and decreases to zero as  
the response becomes saturated (see the 
figure, part b). In gene regulation, the Hill 
coefficient is usually limited by small 
integer values (see the figure, parts a  
and b; curves with n values of 1, 2 or 4). 
Post-translational interactions can increase 
the kinetic order to much higher levels (for 
example, n = 10; see the figure, parts a,b).  
In ultrasensitive regimes, low and high 
signals have smaller sensitivities, whereas 
an intermediate signal has a very high 
sensitivity (a slope of 20, 40 or higher), 
corresponding to a signal–response 
threshold (see the figure, part c). 

a.u., arbitrary units.
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feedback can thus create signal–response curves that 
are characteristic of a bistable switch28. Bistable switches 
have two ultrasensitive thresholds, one for transition-
ing from the off to the on state, and the other for mov-
ing from the on to the off state. These signal–response 
curves are not only ultrasensitive but also hysteretic 
— that is, the response of the network to intermedi-
ate signal levels differs depending on the history of the 
cell (whether it was previously exposed to high or low 
signal concentrations) (FIG. 2c). With two thresholds, 
the response to signal is similar to a ratchet, turning on 
or off irreversibly in the absence of a decisive change 
in signal level. The σE–RseA pair in mycobacteria 
exhibits just such an effect through a feedback loop 
that operates via the two-component system MprAB 
(FIG. 2c). Stress-responsive MprA becomes phosphoryl-
ated to activate transcription of sigE (the gene encoding 

σE), but with a sudden sharp increase in σE, signalling 
via MprAB is sharply increased, creating a hysteretic 
switch25. Ultrasensitivity resulting from sequestration is 
essential for attaining bistability24. This bistability may 
enable ‘bet hedging’ during the transition to dormancy 
in a population of M. tuberculosis invading a host25,29: 
noise in the network disperses the signal level around 
the switch point, causing some subsets of the popula-
tion to be active and others, inactive for stress response 
signalling.

Single-cell ultrasensitivity. In the femtolitre volumes of 
microbial cells, stochastic effects of small numbers  
of interacting molecules are unavoidable. At the level of 
cell populations, noise can reduce the apparent effects 
of ultrasensitivity or bistability30. What looks like a 
discrete switch in a single cell appears to be ‘averaged 

Figure 2 | Saturation creates an ultrasensitive switch. a | As the total concentration of RNA polymerase σ-factor 
increases, anti‑σ factor sequesters it until the critical point is reached, as determined by the concentration of anti‑σ factor 
and its affinity for σ-factor. The resulting quantitative effect is a titration curve for free σ-factor (lower panel) that crosses a 
steep transition into the range where the σ-factor has high concentrations. Comparing the responses for different binding 
affinities shows that strong binding is necessary for the effect. The dots on the ‘very strong binding’ line indicate the 
response at a subthreshold σ-factor concentration ([σ]) (light green), at the threshold [σ] (mid-green) and at an 
above-threshold [σ] (dark green).  b | An analogous threshold arises when a small RNA (sRNA) prevents translation of a 
response mRNA. After the mRNA concentration exceeds a threshold determined by the sRNA concentration (owing to a 
sufficient level of stress signal), translation of unsequestered mRNA proceeds. Points in the graph (lower panel) represent 
experimental data from expressing GFP from a gene containing the crsodB sRNA recognition sequence in the 5′ 
untranslated region; sRNA induction conditions were varied by addition of increasing concentrations of anhydrotetracy-
cline (aTc); thus, each line corresponds to a different sRNA concentration. Solid curves are model predictions26. c | In 
Mycobacterium tuberculosis, RNA polymerase factor σE (encoded by sigE) upregulates MprAB, a two-component system 
that regulates stress responses. Positive feedback from the two-component system combined with an ultrasensitive 
σ‑factor–anti‑σ factor interaction enables a bistable response from MprAB with two ultrasensitive thresholds, as 
demonstrated by the signal–response curve (middle panel). The right panel shows that simulated single-cell distributions 
of a reporter for σE activity are bimodal, with a growing fraction of cells inducing σE after stress initiation. a.u., arbitrary 
units. Part b graph is modified from REF. 26.
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Bistable switch
A system in which there are 
two stable steady states under 
the same conditions, as 
reflected in the signal–
response curve. Which state 
the system adopts in practice 
depends on the initial 
conditions and noise. 

Bet hedging
An evolved phenotype that 
employs heterogeneity to 
ensure that distinct subsets of 
a cellular population are 
adapted to different outcomes 
of an unpredictable future 
environment.

out’ over the population. Ultrasensitivity can therefore 
often be present, and have important implications for 
cellular physiology, but be difficult to detect at the pop-
ulation level. Single-cell measurements are therefore a 
useful experimental tool for detecting ultrasensitive 
behaviours.

Implicit feedback loops
Pleiotropic and post-translational effects can also result 
in unexpected and indirect interactions between net-
work components. For instance, feedback loops can 
occur because of subtle or indirect interactions between 
biochemical reactions31–34. These effects can be quanti-
fied with appropriate mathematical methods (BOX 2). 
However, their detection requires detailed experimen-
tal data that are often lacking because the important 
components are not known in advance. A synergistic 

combination of mathematical modelling and mechanistic 
experimental studies can therefore elucidate non-obvious 
regulatory processes in biological networks.

Modulation of the growth rate as an implicit feedback 
loop. Transcription, gene dosage and protein dilution 
are affected by cellular growth rates35. If the level of 
an expressed protein has an effect on the growth rate, 
then production and/or decay rates for that protein also 
change and an implicit feedback loop arises35,36. For exam-
ple, most proteins in bacteria are stable: the dominant 
process affecting their concentrations is cell growth and 
division. At a constant rate of exponential growth, a given 
protein effectively undergoes first-order degradation. 
When growth slows down, protein dilution is reduced; 
during prolonged stress or in stationary phase, induced 
proteolytic enzymes may degrade proteins37, but a stable 
protein can undergo a sharp increase in concentration 
during growth arrest. If this protein, or its metabolic 
product, imposes a burden on growth, a positive feedback 
loop can arise in relation to protein abundance35 (FIG. 3).

One predicted consequence of growth-modulated 
feedback is the bistable phenotype that may be rel-
evant for antibiotic persistence: when the toxin of a 
toxin–antitoxin system is present at levels above a certain 
threshold, a slow- or non-growing subset of persister 
cells develops38,39 as a result of growth-inhibiting toxin 
production35. During cell division, parental toxin is par-
titioned into two daughter cells according to a binomial 
distribution; one daughter cell may receive much more 
parental toxin than the other (FIG. 3a). Because growth 
rate decreases as a function of toxin abundance, inter-
mediate levels of toxin production may cause an other-
wise identical bacterial population to have two distinct 
growth rates.

Even if growth rate-linked feedback itself does not 
result in bistability, it can change critical parameters in a 
non-bistable network to induce bistability. Such a system 
was recently constructed in E. coli using an autoregulat-
ing T7 RNAP36 (FIG. 3b). In this system, T7 RNAP has a 
non-cooperative positive feedback effect that, alone, is 
incapable of inducing bistability. However, the expres-
sion of T7 RNAP imposes a metabolic burden on the cell, 
slowing cell growth and resulting in an implicit positive 
feedback loop. Together, the two loops create a bistable 
switch. As with the bistable σE–MprAB system described 
above, in the population as a whole, noise disperses the 
gene expression level to the two stable states simultane-
ously. This can be observed as two distinct subpopula-
tions of cells with low and high levels of expression for a 
T7 RNAP reporter (FIG. 3b).

Implicit feedback arising from enzymatic interactions. 
In addition to the implicit feedback that can result from 
growth rate-dependent pleiotropic effects, this type of 
feedback can arise from the modulation of catalytic reac-
tions by substrates, products or cofactors33. For example, 
substrate inhibition40 can lead to a non-monotonic dose 
response in enzyme catalysis, resulting in a feedback 
loop that allows bistability: more substrate inhibits the 
conversion of substrate to product, resulting in more 

Box 2 | Using mathematical tools to identify feedback loops

In a chemical reaction network with established rates of production and degradation 
for each species, feedback loops can still be difficult to determine by examination. 
Mathematical tools adapted from chemical engineering can assist in their analysis.  
One approach, chemical-reaction network theory98, exploits topological features of 
post-translational networks to predict bistability33, absolute concentration robustness99 
(for example, using the robustness of regulation by bifunctional two-component 
systems to predict the expression levels of their proteins100,101) and other dynamic 
properties of networks.

Another approach is to write each molecular subspecies as a system of differential 
equations and exploit dynamic-systems theory. For example, one can detect implicit 
feedback loops using a matrix that captures the local sensitivity of all molecular species 
to each other using partial derivatives, known mathematically as the Jacobian matrix34. 
The Jacobian matrix reveals the extent to which fluxes that produce and degrade one 
variable depend on others. We may find that variable A depends on variable C, which in 
turn depends on variable B, which in turn depends on A, so that we have a feedback 
loop A → B → C→ A. To be sure that all feedback loops are detected, all significant 
interactions between species (both direct and pleiotropic) should be present in the 
Jacobian matrix. This task is often challenging owing to subtle physical effects that may 
need to be determined experimentally.

A simple model for a two-species network in which one species has a ubiquitous 
inhibitory effect on growth can be diagrammed with each reaction and regulatory 
interaction, and represented as a set of differential equations, in which x and y are the 
cellular concentrations of each variable; V

x
+, k

prod
 and k

deg
 are kinetic parameters of each 

reaction; and prime (′) denotes the time derivative:

The regulator x induces production of y, which inhibits growth-mediated protein 
degradation (that is, dilution). Here, the Jacobian network is:

A mathematical expression for each matrix entry tells us whether each effective 
interaction has a positive or negative effect on expression of the target. With 
dependencies within the network determined by the entries in the Jacobian matrix, a 
circuit diagram of off-diagonal (that is, non-autoregulatory; highlighted in blue) 
elements simplifies the picture and shows the effects of growth inhibition manifesting 
as a positive feedback loop:
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µ

Noise
Variability in signals and 
responses from cell to cell that 
arises either intrinsically, from 
the nature of the 
physicochemical processes, or 
from extrinsic variability such 
as randomness in ribosome 
inheritance.

Jacobian matrix
A matrix for which the entries 
quantitate the sensitivity of 
each variable (often 
corresponding to chemical 
species) to each other variable.

Implicit feedback loop
A feedback loop for which its 
existence is not obvious, but 
which emerges from non- 
transcriptional interactions.

substrate41. An implicit positive feedback loop can also 
be induced by interacting proteins forming a long-lived, 
catalytically inactive ‘dead-end’ complex31,32,42. For exam-
ple, in the partner-switching network that controls the 
activity of RNAP factor σF in Bacillus subtilis31,32, SpoIIAB 
is an anti-σ factor that binds and inhibits σF unless it is 
sequestered by unphosphorylated SpoIIAA. The level of 
unphosphorylated SpoIIAA is regulated by the kinase 
activity of SpoIIAB and phosphatase activity of SpoIIE. 
SpoIIAB can bind ATP or ADP, and formation of the 
ADP-associated SpoIIAB–SpoIIAA complex results in 
the slow conversion of SpoIIAB–ADP to SpoIIAB–ATP 
(as nucleotide exchange is not possible before the com-
plex dissociates). The complex is self-enhancing because 
it sequesters SpoIIAB from kinase activity, thus increas-
ing the fraction of unphosphorylated SpoIIAA that is 
available to bind to ADP-associated SpoIIAB. This feed-
back loop irreversibly commits the pre-spore compartment 
to sporulation.

Untangling coupled feedback loops
Simple model systems of single feedback loops have pro-
vided valuable insight into the dynamics of biological 

networks. However, natural networks often contain 
a complex mesh of gene-regulatory and biochemical 
interactions43. Even after the implicit feedback loops, 
ultrasensitive switches and other nonlinearities have 
been identified for a network, coupled feedback loops 
and biochemical interactions can add another level of 
sophistication to physiological responses. The resulting 
dynamics may depend on mechanistic details: extrin-
sic inputs, transcription rates and binding constants. 
A single sufficiently complex network architecture can 
perform many different dynamic functions; this multi-
functionality has been linked to evolvability6 and may 
thus result in selection for network complexity. Complex 
network architectures can also arise from evolutionary 
drift with no particular selective pressure44,45.

How do we determine the physiological relevance 
of a complex network architecture? One approach is to 
use perturbations or deletions of network components 
to systematically characterize the interconnections. For 
instance, one can break a feedback loop and compare the 
dynamic performance of this modified network to that of 
the intact network, or use steady-state properties to infer 
feedback effects. Experimentally, transcriptional feed-
back can be broken by replacing a feedback-modulated 
promoter with a constitutive or inducible promoter46 or 
by deleting genes in the network. Similarly, networks 
can be rewired in silico using mathematical models (see 
Supplementary information S1 (box))11,47. Measurements 
of the open-loop gain — that is, the response of a net-
work output to changes in the level of inducer — can 
then allow determination of the effect of feedback (tak-
ing into account both positive and negative interactions). 
For some networks, characterization of the open-loop 
response can reveal whether the network can be bista-
ble (see Supplementary information S1 (box)). However, 
the deletion of genes risks complicating the fine-tuned 
control of the system and moving away from the steady 
state of the intact system.

Systematic experimental perturbation of feedback. Recent 
studies of the glutamate-dependent acid response, acid 
resistance system 2 (AR2), in E. coli48,49 used a combina-
tion of feedback loop deletions and systematic network 
perturbations to decrypt the elements responsible for 
this complex dynamic response. When an E. coli culture 
is exposed to low pH, the acid-responsive two-compo-
nent system EvgAS becomes activated. One of the oper-
ons in the regulon of phosphorylated EvgA is safAydeO; 
sensor-associating factor A (SafA; also known as B1500) 
forms a negative feedback loop with the two-component 
system PhoPQ, whereas YdeO upregulates the glutamic 
acid decarboxylase operons gadE and gadBC directly 
and indirectly, respectively (FIG. 4a,b). This subnetwork 
induces a fast immediate response with an overshoot, as 
measured by promoter–luciferase reporter gene fusions49 
(FIG. 4c, the first 60 minutes). Phosphorylated PhoP, the 
result of the SafA interaction with the PhoPQ system, not 
only represses safAydeO but also induces transcription 
of iraM48 — encoding an anti-adaptor that inhibits the 
RssB-mediated proteolysis of RNAP factor σS (encoded 
by rpoS) — thereby activating σS when the stress is 

Figure 3 | Modulation of growth rate can create an implicit feedback loop with 
two resulting subpopulations of bacteria. a | A toxin expressed from a plasmid is 
unequally partitioned into two daughter cells. With a higher toxin concentration, growth 
is slower, allowing more toxin to build up (as the cell is still expressing the toxin from the 
plasmid). The result of the feedback loop is a nonlinear relationship between the strength 
of the toxin promoter and the growth rate of the cell. A mathematical model (right panel) 
predicts two resulting subpopulations of cells growing at different rates under some 
conditions (red curve; the dashed portion represents an unstable intermediate steady 
state), and unimodal populations with a nonlinear toxin response under other conditions 
(black curve)35. b | A synthetic system in Escherichia coli with autoregulating T7 RNA 
polymerase (RNAP) that also upregulates a fluorescent protein (CFP) as a readout. A 
second, implicit feedback loop arises from the metabolic burden of gene expression. 
Microcolonies of the synthetic strain exhibit bimodal fluorescence (visible as both dark 
and green cells; middle panel) as a result of bistability36, as shown by the model (right 
panel). a.u., arbitrary units. Part b is reproduced, with permission, from REF. 36 © (2009) 
Macmillan Publishers Ltd. All rights reserved.
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Toxin–antitoxin system
A small gene network that 
typically includes one gene 
encoding a toxin and another 
encoding a neutralizing 
antitoxin.

Coupled feedback loops
Multiple feedback loops that 
interact in some way, such as 
being nested or resulting from 
a single regulatory event that 
modulates multiple 
transcriptionally coupled 
genes.

Dynamic performance
The characteristics of a 
response to a signal over time.

Biphasic
Of a response: composed of 
two distinct, characteristic 
types of dynamics that are 
separated in time, such as an 
initial transient phase and a 
long-term persistent phase.

persistent and ultimately upregulating the gadE and 
gadBC operons (FIG. 4c, after 60 minutes). In one study, 
wild-type responses were compared with open-loop 
dynamics created by deletion of phoP, ydeO and rpoS49 

(FIG. 4c). Using these results, and accounting for non-tran-
scriptional interactions, the underlying circuit diagram 
was constructed and gave clues to the function of the 
acid response network. This network employs a bipha-
sic dynamic with a fast initial response and a persistent, 
high-expression phase for when the stress is ongoing. 

The first phase is mediated by negative feedback, which 
has long been known to speed up induction dynamics50. 
The second phase involves a feedforward loop to the 
output stress response genes, a type of regulation that is 
known to cause signal delays in a sign-sensitive manner 
(that is, according to whether the feedback is positive or 
negative; in this case, the deactivation of gene expression, 
rather than its activation, is delayed because the gabBC 
promoter acts as an OR gate, thus requiring both sig-
nals (GadE and σS) to be lost to stop gene expression)5,8. 

Figure 4 | Complex feedback architecture with non-transcriptional interactions enables complex dynamic 
responses. a | The Escherichia coli glutamate-dependent acid response system, acid resistance system 2 (AR2), is a complex 
network with interleaved transcriptional–post-translational interactions that responds to acid stress on two timescales: an 
initial low pH feeding into the EvgAS two-component system, and upregulation of alternative RNA polymerase factor σS in 
response to persistent stress48,49. b | A circuit diagram reveals a negative feedback architecture for early responses in the 
AR2 system (pre‑60 minutes) and a coherent feedforward loop under persistent stress. c | High-temporal-resolution 
measurements of promoter kinetics in the AR2 system show two response phases: a fast, overshooting response from the 
initial, negative feedback loop and a persistent high-expression response imparted by the σS–Gad feedforward loop49. 
Systematic deletion mutants that have lost various dynamic characteristics show the role of each feedback loop in the 
emergent AR2 biphasic system response. d | The Caulobacter crescentus cell cycle has evolved to deterministically produce 
daughter cells with two different developmental phenotypes: a transient swarming cell type and a mature stalked cell type. 
Each cell cycle stage has a characteristic expression of core genetic-circuitry components, as indicated in the lower panel 
(black lines show expression during that stage). e | The core genetic programme of C. crescentus cell division is a feedback 
circuit that depends on regulated degradation to attain oscillatory behaviour. A spatial gradient of cell cycle transcription 
regulator (CtrA) phosphorylation, mediated by the polar localization of cell cycle histidine kinase (CckA) kinase and 
phosphatase activities, suppresses chromosome replication in the swarmer pole (where CckA acts as a kinase) but not in the 
stalked pole (where CckA acts as a phosphatase). Blue shading represents the gradient of phosphorylated-CtrA 
concentration. a.u., arbitrary units; Gad, glutamic acid decarboxylase. 
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Robustness
Insensitivity of a dynamic 
performance to small 
parameter perturbations that 
would arise from intrinsic or 
extrinic noise, slight 
environmental variations, and 
so on (for the purposes of this 
Review; the term has many 
subtly different meanings in 
systems biology).

Oscillator
A network architecture that 
results in periodic oscillations 
of an output.

Such an interleaved architecture makes initial responses 
fast and decisive, whereas persistent responses maintain 
high levels of expression for long time periods. The result  
of this complex network architecture is more effective 
survival in acidic environments49 (FIG. 4c, upper panel).

Feedback architectures for complex dynamic responses. 
Mounting evidence suggests that the biphasic response 
is a general bacterial survival strategy that emerges 
from complex feedback architecture. An important 
example is the stringent response, during which amino 
acid starvation is sensed during translation by RelA, 
a ribosome-associated protein that produces guano-
sine tetraphosphate (ppGpp) as an activator of amino 
acid biosynthesis. Biosynthesis of amino acids relieves 
starvation, acting as a negative feedback loop that pre-
vents induction of the generalized stress response51. 
However, if biosynthesis is unsuccessful, sufficient 
ppGpp accumulates to induce the σS-mediated stress 
response and prepare the cell for long-term survival51. 
Similarly, autoregulated two-component systems in the 
presence of an exogenous source of response regulator 
phosphorylation are predicted to exhibit either negative 
feedback (for initial induction with fast responses) or 
positive feedback (for persistent stress responses with 
high expression), depending on signal strength11 (see 
Supplementary information S1 (box)). Negative feed-
back is associated with overshoot kinetics (FIG. 1), whereas 
positive feedback confers a robustness to transient signal 
interruptions3,4,52.

The biphasic dynamics arising from a complex feed-
back architecture can also manifest as two subsets of a 
bacterial population simultaneously exhibiting differ-
ent phenotypes. There are several known examples of 
such systems with coupled positive feedback loops. In 
B. subtilis, positive feedback in several steps of the Spo0A 
sporulation phosphorelay generates noise, increasing the 
variability of phosphorylated‑Spo0A levels in the pop-
ulation53. As a result, a fraction of the cells exceed the 
downstream threshold for sporulation entry, and both 
vegetative and sporulating subpopulations coexist, in a 
bet-hedging strategy. The Spo0A system is an integrated 
part of a larger network that appears to ratiometrically 
integrate quorum sensing signals along with stress sig-
nals54 and that interacts with competence regulation55, 
showing that population structure and cell-to-cell com-
munication can become a part of the decision circuit. 
Multiple positive feedback loops also occur in Gram-
negative bacteria: in Salmonella spp., the type III secre-
tion system encoded by the Salmonella pathogenicity 
island 1 (SPI‑1) is controlled by a coupled set of tran-
scription factors that positively regulate one another to 
both impose a discrete threshold on SPI‑1 gene expression 
and increase expression levels when induced56.

Coupled negative feedback loops have important 
physiological consequences as well. Their effects typi-
cally depend on details such as delays between the signal 
and response, caused by signal processing steps such as 
transcription, translation, protein folding and protein 
multimerization. Whereas negative feedback without a 
delay improves the response times50 and reduces noise57, 

persistent oscillations and increased noise can arise with 
delays in the response58,59 or with consumption of end prod-
ucts in metabolic pathways58,60. Multiple negative feedback 
loops stabilize the system and improve homeostasis by 
eliminating these effects61.

Non-transcriptional cell cycle control. The Gram-
negative bacterium Caulobacter crescentus is a model 
bacterium in which coupled networks of post-transla-
tional spatiotemporal control regulate the cell cycle62. 
Each division in C. crescentus is a finely orchestrated pro-
cess that results in the simultaneous production of two 
distinct daughter cells: a swarmer cell and a stalked cell 
(FIG. 4d). The swarmer cell undergoes a brief motile stage 
before maturing to the stalked phenotype, attaching to a 
surface and resuming asymmetrical cell division. Unlike 
the two populations that coexist in bacteria which have 
adopted a bet-hedging strategy, such as B. subtilis, these 
two C. crescentus cell types are maintained deterministi-
cally: every mother cell cycle produces one stalked and 
one swarmer daughter.

The core regulatory circuit consists of four genes 
expressed at specific points during the cell cycle (FIG. 4d). 
Each gene product regulates multiple downstream cell 
cycle-specific genes. In one model, the four gene products 
form a positive feedback loop. Within the larger positive 
loop, the phosphorylated form of cell cycle transcrip-
tion regulator (CtrA), the master regulator, is at the cen-
tre of two negative loops, one with GcrA and one with 
the methylase CcrM (also known as CcrMI) (FIG. 4e). 
Repeated expression of the same genes in the same order, 
over many consecutive cell cycles, depends on fast, regu-
lated turnover of the protein products via proteolytic deg-
radation63 (FIG. 4e). For stable proteins, signal loss depends 
on dilution via cell growth and division, a much slower 
process than is needed for brief expression during a short 
fraction of a cell cycle. So, with induced degradation of 
each gene product, the core cell cycle genes are expressed 
in distinct pulses for discrete periods, forming an oscil-
lator63. Such oscillatory dynamics prevent competition 
between signals for different stages in the cell cycle.

The asymmetric character of C. crescentus cell divi-
sion depends on both a spatial signalling gradient in 
the master regulator CtrA and maintenance of the 
chromosome in a polarized physical orientation64, with 
the origin of replication at the stalked pole before rep-
lication initiation. The crucial parameter is the amount 
of phosphorylated CtrA. The bifunctional protein cell 
cycle histidine kinase (CckA), which can act as a kinase 
and a phosphatase, modulates CtrA phosphorylation 
and is under feedback control by phosphorylated CtrA 
itself 65,66. When CtrA is phosphorylated, CckA is mainly 
localized to the polar regions of the pre-divisional cell. 
The CckA at the stalked pole has CtrA phosphatase 
activity, whereas the CckA at the swarmer pole exhibits 
kinase activity owing to its interaction with DivL67. 
A recent study coupled mathematical analysis with 
experimental, spatially-resolved measurements of CtrA-
regulated initiation of DNA replication67 to elegantly 
demonstrate the phosphorylatory control that allows 
replicative asymmetry in these cells67. Nevertheless, 
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Signal matching
Adjusting the amount of signal 
produced by an upstream 
node so that it is within the 
range to which a downstream 
node is responsive 
(unsaturated).

the gradient in total CtrA probably contributes to 
the cell cycle: perturbations in CtrA proteolysis and 
CckA activity buffer each other62. This type of partial 
redundancy of non-transcriptional processes ensures 
that the cell cycle proceeds robustly in the presence 
of noise. The complexity of the C. crescentus cell cycle 
control network, combining transcriptional and non-
transcriptional interactions, may therefore have evolved 
in response to selective pressure for a robust phenotype.

Spatial gradients and oscillatory dynamics of cell 
cycle regulation also appear in other bacterial species. 
CtrA-modulated cell cycle regulation is conserved in 
alphaproteobacteria68. Studies have shown that stalked 
cells undergo ageing and that decreasing reproduction is 
associated with a specific stalked-cell pole69, an effect that 
has been generalized to the morphologically symmetrical 
gammaproteobacterium E. coli70.

Mechanistic synthetic biology
Non-transcriptional nonlinearities, implicit interac-
tions and overall complexity underscore the challenges 
of studying natural networks. Improved knowledge of, 
and control over, network architectures is essential for 
a better understanding of their function. These issues 
have driven researchers to construct synthetic biological 
networks that function as tractable laboratory models 
and allow a more thorough understanding of phenotype 
at the level of genotype71.

Challenges in constructing synthetic gene networks. 
In early synthetic biological networks, signals were 
often encoded as the number of protein transcription 
factors in a cell72–76. In this type of network, the preci-
sion of signal transmission is limited by the noise in 
gene expression. Random production and degradation 
of mRNAs77 and proteins78, transmitted fluctuations 
from other molecules in the network78,79 and variations 
in global factors such as polymerases and ribosomes80 
reduce the precision with which a given protein can be 
expressed. Indeed, the standard deviation in protein 
abundance across a population of cells is often 10–50% 
of the mean81. Because many transcription factors bind 
strongly to their promoters, small changes in transcrip-
tion factor concentration can substantially change pro-
moter activity. In such circumstances, fluctuations can 
lead to signal degradation in an individual cell and dra-
matic differences in the behaviours of networks in neigh-
bouring cells. These fluctuations can, in turn, result in 
a breakdown in the function of the synthetic network75.

Signal matching is another difficulty that arises in the 
construction of synthetic gene networks. The range of 
output signal produced by a given node can be improp-
erly matched with the range of signal to which another 
node can respond. For example, if two promoters are 
connected in series, leaky expression of a transcrip-
tion factor from the first promoter may be sufficient to 
strongly activate or repress the second72,76. In such a case, 
the downstream promoter effectively becomes ‘deaf ’ to 
information coming from the upstream promoter, and 
the network can lose its dynamic range of response or 
become non-functional72,76,82 (FIG. 5a).                      

Control of translation rate. Various methods have been 
used to match signal strengths in synthetic gene net-
works73,76,82–84, with modification of translation initiation 
rates being a particularly successful approach (FIG. 5a). 
For a given protein, the mRNA sequence surround-
ing the start codon of the encoding transcript regulates 
total abundance in the cell. Among other parameters, 
the distance of the ribosome-binding site (RBS) from 
the start codon and the degree of mRNA base pairing 
with 16S ribosomal RNA control the rate of translation 
and, thereby, protein concentration. RBS swapping73 and 
directed evolution82 have been used to tune the abun-
dances of signal-carrying proteins in transcriptional net-
works. Recently, thermodynamic models that allow the 
de novo design of RBS sequences with desired translation 
rates have been developed84,85. New DNA assembly meth-
ods make it possible to place a synthetic RBS sequence in 
front of any ORF without leaving scars from restriction 
enzyme sites86. This type of seamless sequence replac-
ment is important when cloning RBSs, as their activity is 
strongly dependent on adjacent nucleotide sequences84.

Robust oscillations via post-translational control. One 
goal of synthetic biology is to engineer networks that are 
capable of generating robust, dynamic cellular behav-
iours. A particularly challenging behaviour is that of 
persistent oscillations. The first attempt to construct an 
oscillator, known as the repressilator, used three tran-
scriptional repressors organized in a ring topology75. If 
any repressor achieved a high concentration, it would 
repress the next member of the network, so the third 
repressor would increase in abundance, subsequently 
repressing the first. Although this topology gave rise to 
oscillations, they were short lived and unstable, unlike the 
robust natural oscillations that occur in organisms such 
as C. crescentus. Because signal is carried as transcription 
factor abundance, noise in gene expression is thought to 
compromise the performance of the repressilator75,81.

Recently, it was demonstrated that non-transcriptional 
effects can have an important role in the performance 
of oscillatory transcriptional networks87,88. In one engi-
neered network, the arabinose-dependent transcription 
factor AraC was engineered to activate transcription of 
its encoding gene and of the lactose (lac) operon repres-
sor gene (lacI)87. In this way, when arabinose was present, 
both AraC and LacI rose in abundance. After accumu-
lating to a considerable level, LacI dominantly repressed 
transcription of araC. Both transcription factors were 
tagged for proteolytic degradation, causing their abun-
dances to decrease rapidly when AraC was not produced. 
A mathematical model of the network suggests that delays 
in the LacI-mediated negative feedback step, arising from 
transcription, translation, protein folding, protein mul-
timerization and DNA binding, are crucial for robust 
oscillations. Indeed, the longer the negative feedback 
delay, the more robust the oscillations are to changes in 
network parameters87. Although the general properties of 
negative feedback-driven oscillatory networks have long 
been known, the construction of this synthetic network 
highlighted the impact that these more subtle processes 
can have on the performance of gene networks.
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In a follow-up study, the performance of engineered 
oscillators was further improved by employing a cell 
membrane-diffusible acyl-homoserine lactone (AHL) 
signalling molecule from the quorum sensing system of 
Vibrio fischeri 88. In this network, AHL activates its own 
production and that of N-acyl-homoserine lactonase 
(AiiA), which degrades it. AHL is also a ligand for the 
transcription factor LuxR, acting much like arabinose 
in the previously described oscillator. In this enhanced 
system, the concentration of AHL is proportional to the 
abundance of the enzymes that produce and degrade 

it, and it probably serves to average out the noise in the 
expression of these proteins. The fact that AHL is mem-
brane diffusible also drives neighbouring cells to occupy 
the same signalling state at the same time. Beyond driving 
the bacteria to oscillate in synchrony, this type of popula-
tion averaging also improves the robustness of the net-
work in any individual cell. Any cell that begins to drift 
from the synchronized signal range is drawn back into the 
oscillatory regime by the influence of neighbouring cells.

Physical colocalization improves signal flow. Signal flow 
through a network can also be regulated by controlling 
physical interactions between signalling nodes89. It was 
recently demonstrated that metabolite flux through a 
carbon-catabolic pathway can be dramatically improved 
by scaffolding otherwise freely diffusing metabolic 
enzymes into a multiprotein complex90,91 (FIG. 5b). Two 
Saccharomyces cerevisiae enzymes were introduced into 
E. coli to generate mevalonate, a precursor to the antima-
larial compound artemisinin92. It was found that a major 
limiting factor for this pathway was the proper match-
ing of the three nodes. In the first design, the upstream 
enzymes in the pathway (AtoB and hydroxymethylglu-
taryl-CoA (HMG) synthase (HMGS)) generated a large 
amount of metabolic product, and a comparatively slow 
third enzyme (HMG-CoA reductase (HMGR)) produced 
a bottleneck. Overexpression of HMGR failed to substan-
tially alleviate the problem owing to the growth burden of 
its production in E. coli. The problem was solved by teth-
ering different numbers of the three enzymes together 
on a synthetic protein scaffold constructed from a trans-
lational fusion of three mammalian protein–protein 
interaction domains (SH3, PDZ and GDB)91. Scaffolding 
two HMGS and two HMGR molecules to a single AtoB 
enzyme resulted in a nearly 80‑fold increase in yield 
over the unscaffolded system, but other stoichiometries 
were less efficient. The large increase in yield occurred at  
low absolute enzyme abundance, decreasing the overall 
metabolic burden imposed on the host cell.

Improvements arising from scaffolding are probably 
due to higher local concentrations of pathway intermedi-
ates, reduction of the accumulation of toxic intermediates 
throughout the cell and proper input–output matching 
of nodes with different enzymatic rates. From a design 
perspective, matching the input and output by scaffolding 
is analogous to tuning RBSs for diffusible signal carriers: 
the total strength of a given node can be raised or lowered 
by engineering the efficiency of the node.

New inspiration for the biological-network designer. Not 
surprisingly, physical interactions underlie signal process-
ing in natural systems as well. One remarkable example 
is the stressosome, a 1.8 MDa B. subtilis protein complex 
that contains a symmetrical core structure reminiscent of 
a viral capsid, decorated with an array of outwards-facing 
sensor proteins. The sensors seem to detect a variety of 
stresses, such as ultraviolet light, pH fluctuations and eth-
anol93. Each sensor is oriented to transmit a signal from 
the outside inwards as a phosphorylation event within the 
stressosome core. Phosphorylation results in the release 
of an enzyme that activates the alternative RNAP factor 
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Figure 5 | Engineering non-transcriptional processes for synthetic biology. 
a | Leaky transcription can produce sufficient signal to flood downstream nodes. Signal 
matching can be achieved by engineering the ribosome-binding site (RBS) to prevent 
low-level transcription from causing extraneous downstream signalling84. b | A similar 
mismatch occurs in a synthetic metabolic pathway for mevalonate production. When the 
synthetic enzymes are present as individual proteins (left panel, the undesired 
intermediate hydroxymethylglutaryl-CoA (HMG-CoA) builds up, as HMG-CoA reductase 
(HMGR) cannot keep up with the flux in the system. By placing the enzymes in the 
pathway onto a physical scaffold (right panel), containing various domains (GBD, SH3 
and PDZ) to which the pathway enzymes are engineered to bind, the relative numbers of 
the enzymes in the scaffold can be manipulated, and the short distances between the 
enzymes ensures a rapid flux of the intermediates through the system and prevents the 
accumulation of the HMG-CoA. This reduces host cell toxicity and greatly increases the 
yield of the product, mevalonate90,91. HMGS, HMG-CoA synthase. 
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σB (REF. 94). Most early synthetic biological networks were 
inspired by the circuits of electrical engineering. Systems 
such as the stressosome, however, demonstrate that biol-
ogy can process signals using approaches that a mechani-
cal engineer might envision as well. Although we are far 
from being able to design macromolecular structures this 
sophisticated, we would be well served by taking inspira-
tion from biological networks in all of their varied forms.

Concluding remarks
The rise of genomics and systems biology has greatly 
enhanced our understanding of the molecular organiza-
tion of life, and in particular of microbial life. Recent stud-
ies, highlighted here, demonstrate that broad systems-level 
analysis must be deepened with consideration of molecular 
mechanisms and non-transcriptional effects. Mechanistic 
details such as growth rates, spatial gradients, implicit feed-
back loops and other characteristics can alter the proper-
ties of gene expression programmes. The ability to deeply 
understand life, and to engineer it for useful purposes, 
requires these effects to be taken into account.

The mechanistic approach to understanding biologi-
cal networks has important implications for the uses of 
mathematical models and their relation to experiments. 
The theoretical foundation of biology is not the networks 
themselves, but rather their underlying physics. Relevant 
models, both conceptual and mathematical, must reflect 
the chemical physics of matter: atoms and molecules 
interacting in space. It is from these interactions that 
sophisticated gene expression programmes arise. Physics 
has constrained evolution and must be remembered 
when building a model, performing an experiment or 
designing a synthetic network.

The importance of mechanism — both evolutionary 
and physical — underscores the importance of quantita-
tive experiments. Microbiologists are moving towards 
an experimental approach that is guided by, and guiding, 
theory. Such complementary approaches are necessary 
for the next generation of life sciences. The quantitative 
effects of ultrasensitivity, implicit and complex feedback 
networks, and spatiotemporal organization of genetic 
programmes, as covered in this Review, exemplify the 
importance of non-transcriptional processes. Many 
other quantitative processes and characteristics outside 
the scope of this Review are known to exist, including 
transcriptional coupling95, DNA-mediated interactions 
such as promoter cooperativity96, and multicellular 
effects97; other examples probably await discovery.

Synthetic-network design has benefited from the 
combined use of transcriptional and non-transcriptional 
interactions. The fact that synthetic networks are sub-
ject to the same mechanistic rigors and challenges as a 
natural system makes them an important scientific tool: 
they enable the comprehensive quantitative experiments 
that are needed to deepen our biological understanding. 
Indeed, characterization of these networks in living cells 
has revealed subtle physical effects, the impacts of which 
were not widely appreciated a priori. Feedback between 
synthetic and systems biology will pave the way towards 
the important medical and industrial applications that 
will no doubt arise from our deepened understanding 
of biological networks. The complementary approach 
of synthetic-network construction alongside quantita-
tive network analysis stands to contribute, perhaps more 
than any other single approach, to our understanding of 
the organizing principles of biology.
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One method to understand feedback is to “break the loop,” turning the closed-loop feedback system into one with a 
defined input and output. In the resulting open-loop system, the output would feed back into the input. In the following 
system, we break the loop in a system with an output y that feeds back into x:

We can then measure the sign and strength of the now-broken feedback loop with the concept of sensitivity: how much 
the output y changes for a small change in the input (y

0
). In this particular case, the sensitivity is called an open-loop gain 

because it measures the gain (or how much y changes with respect to changes in y
0
) of the open-loop form of the 

closed-loop system. Mathematically, sensitivity of y to changes in the point of feedback regulation (y
0
) at a given steady 

state (x,y) is calculated with the formula: 

 The sign of γ tells us the sign of feedback. Note that the sign of feedback may not be obvious, and may emerge from 
complex interactions in the network that connects x to y.

For instance, we can find the open-loop gain in a simple mathematical model of a two-component system (FIG. 1), by 
defining mathematical forms with one or more rate constant for each process embedded in the system. Sparing the 
details of computation, we found that γ is proportional to k

pt
k

d
 – k

ph
k

e
 where k

pt
 and k

ph
 are respective rates of regulator 

phosphorylation and dephosphorylation by the sensor, k
d
 is the rate of dilution from growth, and k

e
 is the rate parameter 

for exogenous phosphorylation. This simple relationship between the gain and rate constants tells us several things 
about transcriptional feedback in two-component systems:
(i) regulator dephosphorylation and exogenous phosphorylation are both necessary for negative feedback and thus 

overshoot kinetics;

(ii) because the dilution rate k
d
 is small even for fast exponential growth, the rate of exogenous phosphorylation can be 

small and still permit negative feedback;

(iii) different magnitudes of external signalling that modulate phosphorylation and dephosphorylation of the regulator via 
the sensor (k

pt
 or k

ph
) can result in different effective feedback signs.

If the circuit diagram of a network (BOX 2) has only unambiguously positive feedback loops, and its open-loop form has 
a single steady state, breaking the loop can determine if the intact system is bistable47. The basic idea is to use the 
open-loop form of the system to quantify y at steady state as a function of y

0
. We denote this function, the open-loop 

characteristic curve, by f(y
0
). Then graph y = f(y

0
) along with the feedback strength of the system (that is, open-loop gain, 

here for simplicity y
0
 = y) and look for intersections:

If the system is bistable as in the graph above, the system will have two stable steady states (black points) and one 
unstable (open circle).
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